IS200IGEHG1A工控备件机器人模块
故障覆盖范围:最小输入变化输出变化采样周期错误比较的最小周期不适用不适用信道故障时的切换时间10ms(典型),20ms最大逻辑功率<15瓦1。驱动Pwr1和Pwr2指示器的回路功率检测器识别回路功率(大于20 VDC)的存在,并且不验证所连接负载的回路功率是否足够。表20 3806E模拟输出规格(续)功能规格68第2章Tricon v9–v10系统3807规格和说明系统组件规划和安装指南本表列出了3807型TMR双极模拟输出模块(BPAO)的规格。表21 3807双极模拟输出规格特性规格颜色代码浅绿色输出点4,双极输出分辨率13位输出电流范围-60至+60 mA输出超范围能力无输出精度<0°至60°C满量程(FSR)0.25%(范围-60至60 mA)。FSR=120 mA。线圈诊断输入信号1 4差分,直流耦合线圈诊断输入分辨率12位线圈诊断输入正常范围测量±10 V外部回路功率范围24 VDC–15%/+20%,+5%纹波绝对外部回路电源范围19.2–30.0 VDC过压保护36 VDC连续外部回路电源电流2 3.5安培最小反向电压保护–36 VDC连续冗余回路电源支持是符合性电压3–9 V最小+9 V最大电阻负载工作范围150 ohm@±60 mA 1 kohm@±9 mA 9 kohm@?1 mA电感负载工作使用300Ω680 nF缓冲器的标准终端的范围0.0 H最小1.0 H最大电感负载工作范围使用外部300Ω4.7 uF缓冲器4 0.0 H最小2.6 H最大电容负载工作范围0 uF最小133 uF最大,非极性,带并联电阻器最大故障时间,每小时切换到热备用模块小于20毫秒模拟输出模块69 Tricon v9–v10系统的规划和安装指南BPAO旨在为运动控制应用中的位置、速度和力提供正负驱动电流。不得用于安全应用。BPAO包括模拟输入点,也称为线圈诊断输入,用于在终端面板上测量伺服阀线圈/冗余线圈两端产生的电压的环回测量。这些输入可用于应用程序。在开发使用环回电压测量的应用程序时,请考虑以下因素:•线圈诊断输入直接连接到终端面板上的相应双极输出•BPAO线圈诊断输入读取终端面板上电压,无论终端电缆的长度如何•计算BPAO线圈诊断输入读取的电压时,考虑终端电缆电线的电阻加上从终端面板到负载的电线的电阻,再加上负载本身的电阻•线圈机械力(转矩电机)产生的微声电压•线圈响应电流变化产生的反EMF电压•控制装置的指令电流变化程序•环境背景电磁噪声•写入输出(命令电流)和读取回送电压输入之间发生的三到四次扫描的延迟最大故障时间,驱动负载的通道之间的周期性旋转导致的电流下降。通道每10秒旋转一次。小于1毫秒状态指示器:模块状态通过、故障、激活、负载状态指示器:回路功率Pwr1、Pwr2输出诊断故障覆盖率:最小输入变化输出变化采样周期最小误比较周期不适用不适用不可用逻辑功率<20瓦1。应用程序中有四个输入点用于线圈诊断。2.驱动Pwr1和Pwr2指示器的回路功率检测器识别回路功率(大于19.2 VDC)的存在,但不验证所附负载的回路功率电流是否充足。3.合规电压是在指令电流下在负载两端产生的电压。4.请联系IPS全球客户支持(GCS)中心或您的区域支持中心,了解替代缓冲器配置。表21 3807双极模拟输出规格(续)功能规格70第2章Tricon v9–v10系统的系统组件规划和安装指南您应在控制程序功能中包含一个单扫描滤波器,以消除:•由
fault coverage: Minimum input change Output change sample period Minimum period of mis-compares Not applicable Not applicable Not applicable Switch time upon channel fault 10 ms (typical), 20 ms maximum Logic power < 15 watts 1. The loop-power detectors which drive the Pwr1 and Pwr2 indicators identify the presence of loop power (greater than 20 VDC), and do not verify adequate loop power for the attached load. Table 20 3806E Analog Output Specifications (continued) Feature Specification 68 Chapter 2 System Components Planning and Installation Guide for Tricon v9–v10 Systems 3807 Specifications and Description This table lists the specifications for the model 3807 TMR BiPolar Analog Output Module (BPAO). Table 21 3807 BiPolar Analog Output Specifications Feature Specification Color code Light green Output points 4, bipolar outputs Resolution 13 bits Output current range -60 to +60 mA Output over-range capability none Output accuracy < 0.25% (in range of -60 to 60 mA) of Full Scale Range (FSR), from 0° to 60° C. FSR = 120 mA. Coil diagnostic input signals1 4 differential, DC-coupled Coil diagnostic input resolution 12 bits Coil diagnostic input normal-range measurement ± 10 V External loop power range 24 VDC –15%/+20%, +5% ripple Absolute external loop power range 19.2–30.0 VDC Over-voltage protection 36 VDC continuous External loop power current2 3.5 amp minimum Reverse voltage protected –36 VDC continuous Redundant loop power support Yes Compliance Voltage3 –9 V minimum +9 V maximum Resistive load operating range 150 ohm @ ± 60 mA 1 kohm @ ± 9 mA 9 kohm @ ± 1 mA Inductive Load Operating Range—using standard termination with 300 Ω 680 nF snubber 0.0 H minimum 1.0 H maximum Inductive Load Operating Range—using external 300 Ω 4.7 uF snubber4 0.0 H minimum 2.6 H maximum Capacitive load operating range 0 uF minimum 133 uF maximum, non-polar, with parallel resistor Maximum glitch time, hourly switch to hot spare module Less than 20 msec Analog Output Modules 69 Planning and Installation Guide for Tricon v9–v10 Systems The BPAO is designed to provide positive and negative drive current for position, velocity, and force in motion control applications. It should not be used in safety applications. The BPAO includes analog input points, otherwise know as coil diagnostic inputs, intended for loopback measurement of the voltage developed across servo-valve coil/redundant coils as measured at the termination panel. These inputs are available to the application program. Consider the following factors when developing an application program that uses loopback voltage measurement: • The coil diagnostic inputs are directly tied to corresponding bipolar outputs on the termination panel • The BPAO coil diagnostic inputs read the voltage at the termination panel, regardless of the length of the termination cable • When calculating voltages read by the BPAO coil diagnostic inputs, consider the resistance of the termination cable wires plus the resistance of the wires from the termination panel to the load plus the resistance of the load itself • Microphonic voltage generated by the coil from mechanical forces on the coil mechanics (torque motor) • Back EMF voltage generated by the coil in response to current changes • Commanded current variations from the control program • Environmental background electromagnetic noise • The delay of three to four scans that occurs between writing an output (commanded current) and reading the loopback voltage input Maximum glitch time, current dropouts caused by the periodic rotation between channels driving the load. Channels rotate every 10 seconds. Less than 1 msec Status indicator: module status Pass, Fault, Active, Load Status indicator: Loop Power Pwr1, Pwr2 Output diagnostic fault coverage: Minimum input change Output change sample period Minimum period of mis-compares Not applicable Not applicable Not applicable Logic power < 20 watts 1. Four input points are used in the application program for coil diagnostic purposes. 2. The loop-power detectors which drive the Pwr1 and Pwr2 indicators identify the presence of loop power (greater than 19.2 VDC), but do not verify adequate loop power current for the attached load. 3. Compliance voltage is voltage developed across the load at the commanded current. 4. Contact the IPS Global Client Support (GCS) center or your regional support center for alternate snubber configurations. Table 21 3807 BiPolar Analog Output Specifications (continued) Feature Specification 70 Chapter 2 System Components Planning and Installation Guide for Tricon v9–v10 Systems You should include a one-scan filter in the control program function to eliminate: • Twenty-millisecond current dropouts caused by