您的浏览器版本过低,为保证更佳的浏览体验,请点击更新高版本浏览器

以后再说X

欢迎访问瑞昌明盛自动化设备有限公司网站!

图片名

全国订购热线:
+86 15270269218E-mail:stodcdcs@gmail.com

ABB >>

A-B>>

GE>>

BENTLY>>

3BHE023584R2625控制模块

3BHE023584R2625控制模块

产品细节介绍3BHE023584R2625控制模块当相电流低于CT的5%时,369检测到停止的电机状态,当在停止的电机状况后检测到相电流时,则检测到启动电机状态。如果电机以5%的电流互感器空转,几次启动和停止如果启动/小时、启动之间的时间、重新启动阻止、启动禁止或反向旋转,则可能会检测到导致滋扰锁定定时器已编程。此外,学习值(如学习的启动热容量、学习的启动电流和学习的加速时间)也可能计算不正确。为...

  • 功能特性
  • 参数规格
  • 视频
  • 应用案例
  • 下载

3BHE023584R2625控制模块

    产品细节介绍

    3BHE023584R2625控制模块

    当相电流低于CT的5%时,369检测到停止的电机状态,当在停止的电机状况后检测到相电流时,则检测到启动电机状态。如果电机以5%的电流互感器空转,几次启动和停止如果启动/小时、启动之间的时间、重新启动阻止、启动禁止或反向旋转,则可能会检测到导致滋扰锁定定时器已编程。此外,学习值(如学习的启动热容量、学习的启动电流和学习的加速时间)也可能计算不正确。为了克服这一潜在问题,可以配置备用数字输入,以读取断路器的状态,并确定电机是停止运行还是只是空转。备用输入配置为启动机状态,断路器辅助触点连接在备用输入端子上,369仅在相位电流低于CT的5%(或零),断路器断开。如果这两个条件都不满足,369将继续以电机运行且启动元件保持不变的方式运行。有关的详细信息,请参阅下面的流程图

    369如何检测电机状态以及启动器状态元素如何进一步定义电机的状态。

    当对Starter Status(起动机状态)进行编程时,必须设置用于监控的断路器触点类型。

    以下内容是断路器辅助触点相对于断路器的状态:

    •52a、52aa-断路器触点打开时打开,断路器触点闭合时关闭

    •52b、52bb-断路器触点断开时闭合,断路器触点闭合时断开,冷却时间常数选择

    热限值不是一门黑白科学,设置保护继电器热模型有一些艺术。热极限的定义对不同的制造商来说意味着不同的事情,而且通常信息不可用。因此,重要的是要记住电机保护热建模的目标是什么:对电机进行热保护(转子和定子),而不会妨碍电机的正常和预期运行条件。

    369的热模型提供了集成的转子和定子加热保护。如果提供冷却时间常数应使用电机数据。由于转子和定子加热和冷却集成在一个模型中,使用较长的冷却时间常数(转子或定子)。

    但是,如果没有提供冷却时间常数,则必须确定设置。在确定冷却时间之前恒定设置时,应考虑电机的占空比。如果电机通常启动并连续运行很长一段时间没有过载负载要求,冷却时间常数可能很大。这将使热模型保守。如果电机的正常占空比涉及频繁启动和停止,且有周期性过载占空比要求,则冷却时间常数需要更短,并接近电机的实际热极限。

    正常情况下,电机在启动期间受到转子限制。

    因此,定子中的RTD不能提供最佳的确定方法凉爽的时候。确定运行和停止冷却时间常数的合理设置可以在按优先顺序列出的下列方式之一。

    1.电机数据表或制造商(如有要求)上可提供电机运行和停止冷却时间或常数。记住冷却是指数的,时间常数是总时间的五分之一从100%的热容量到0%。

    2.尝试根据电机的可用数据确定保守值。有关详细信息,请参见以下示例。

    3.如果没有可用的数据,必须进行有根据的猜测。也许电机数据可以通过其他电机进行估算类似大小或用途的。请注意,在更好地理解制定了电机要求。记住,目标是在不妨碍操作的情况下保护电机这是我们所期望的。

    MOTOR STATUS DETECTION

    The 369 detects a stopped motor condition when the phase current falls below 5% of CT, and detects a starting motor condition when phase current is sensed after a stopped motor condition. If the motor idles at 5% of CT, several starts and stops can be detected causing nuisance lockouts if Starts/Hour, Time Between Starts, Restart Block, Start Inhibit, or Backspin Timer are programmed. As well, the learned values, such as the Learned Starting Thermal Capacity, Learned Starting Current and Learned Acceleration time can be incorrectly calculated. To overcome this potential problem, the Spare Digital Input can be configured to read the status of the breaker and determine whether the motor is stopped or simply idling. With the spare input configured as Starter Status and the breaker auxiliary contacts wired across the spare input terminals, the 369 senses a stopped motor condition only when the phase current is below 5% of CT (or zero) AND the breaker is open. If both of these conditions are not met, the 369 will continue to operate as if the motor is running and the starting elements remain unchanged. Refer to the flowchart below for details of how the 369 detects motor status and how the starter status element further defines the condition of the motor. When the Starter Status is programmed, the type of breaker contact being used for monitoring must be set. The following are the states of the breaker auxiliary contacts in relation to the breaker: • 52a, 52aa - open when the breaker contacts are open and closed when the breaker contacts are closed • 52b, 52bb - closed when the breaker contacts are open and open when the breaker contacts are closed

    SELECTION OF COOL TIME CONSTANTS 

    Thermal limits are not a black and white science and there is some art to setting a protective relay thermal model. The definition of thermal limits mean different things to different manufacturers and quite often, information is not available. Therefore, it is important to remember what the goal of the motor protection thermal modeling is: to thermally protect the motor (rotor and stator) without impeding the normal and expected operating conditions that the motor will be subject to. The thermal model of the 369 provides integrated rotor and stator heating protection. If cooling time constants are supplied with the motor data they should be used. Since the rotor and stator heating and cooling is integrated into a single model, use the longer of the cooling time constants (rotor or stator). If however, no cooling time constants are provided, settings will have to be determined. Before determining the cool time constant settings, the duty cycle of the motor should be considered. If the motor is typically started and run continuously for very long periods of time with no overload duty requirements, the cooling time constants can be large. This would make the thermal model conservative. If the normal duty cycle of the motor involves frequent starts and stops with a periodic overload duty requirement, the cooling time constants will need to be shorter and closer to the actual thermal limit of the motor. Normally motors are rotor limited during starting. Thus RTDs in the stator do not provide the best method of determining cool times. Determination of reasonable settings for the running and stopped cool time constants can be accomplished in one of the following manners listed in order of preference. 1. The motor running and stopped cool times or constants may be provided on the motor data sheets or by the manufacturer if requested. Remember that the cooling is exponential and the time constants are one fifth the total time to go from 100% thermal capacity used to 0%. 2. Attempt to determine a conservative value from available data on the motor. See the following example for details. 3. If no data is available an educated guess must be made. Perhaps the motor data could be estimated from other motors of a similar size or use. Note that conservative protection is better as a first choice until a better understanding of the motor requirements is developed. Remember that the goal is to protect the motor without impeding the operating duty that is desired.

    2f4dbe2b9c0e38c82b3471c93854851d.jpg

    3a0047305f0b127799e5cd8f399cc6b0.jpg

    公司主营产品图展示

    微信图片_20220909170353.jpg

    产品优势

    1:国外专业的供货渠道,具有价格优势

    2:产品质量保证,让您售后无忧

    3:全国快递包邮

    4:一对一服务

    公司主营范围简介

    PLC可编程控制器模块,DCS卡件,ESD系统卡件,振动监测系统卡件,汽轮机控制系统模块,燃气发电机备件等,优势品牌:Allen Bradley、BentlyNevada、ABB、Emerson Ovation、Honeywell DCS、Rockwell ICS Triplex、FOXBORO、Schneider PLC、GE Fanuc、Motorola、HIMA、TRICONEX、Prosoft等各种进口工业零部件、欧美进口模块。

    产品广泛应用于冶金、石油天然气、玻璃制造业、铝业、石油化工、煤矿、造纸印刷、纺织印染、机械、电子制造、汽车制造、塑胶机械、电力、水利、水处理/环保、锅炉供暖、能源、输配电等等

    品牌:ABB

    型号:3BHE023584R2625

    产地:瑞士

    质保:365天

    成色:全新/二手

    发货方式:快递发货


图片名 客服

在线客服 客服一号